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THE GLOBAL PERSPECTIVE
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TWIN CHALLENGES FOR US ELECTRICITY: ZERO CARBON, 2X DEMAND

B Natural gas m Coal ® Oil & other fossil M Existing zero CO2
10,000 Electrification Scenarios
+120%
8,000
+80%
3 — +50%
ég 6,000
5
5 4,000
K
2,000
0

2020 2030 2040 2050

Data source: Iyer et al. 2017, GGCAM USA Analysis of U.S. Electric Power Sector Transitions (performed for the United States Mid-Century Strategy for
Deep Decarbonization), Pacific Northwest National Laboratory; 2020 zero-carbon electricity supply from EIA Annual Energy Outlook 2019. 3



THE RAPID SWITCH: NEW ZERO CARBON ELECTRICITY NEEDED
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Data source: Difference between projected electricity demand in Iyer et al. 2017 and 2020 zero-carbon electricity supply from EIA Annual Energy Outlook
2019. Assumes all 2020 generation can be sustained through 2050. Retirements of existing capacity would increase new zero-carbon generation needed. 4



HISTORICAL PRECEDENTS (SCALED TO U.S. POPULATION)
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Data source: Historical per capita deployment rates from MIT 2018, The Future of Nuclear in a Carbon Constrained World, scaled to based on projected
2035 U.S. population of 364 million from U.S. Census Bureau. 5

Average GW additions per year
ul

Ul




JOUIe Login  Register Subscribe Chim Q =
ARTICLE | ONLINE NOW = Bl Ia CX) [P ©

Purchase  Subscribe  Save  Share Reprints  Request

The Role of Firm Low-Carbon Electricity Resources in

Deep Decarbonization of Power Generation

Nestor A. Sepulveda 2 * =+ Jesse D. Jenkins * Fernando J. de Sisternes « Richard K. Lester & =

Show footnotes

Published: September 06, 2018 * DOI: hitps://doi.org/10.1016/j joule.2018.08.006

http:/bitly/FirmlLowCarbon _+ PlumX Metrics

Highlights H ig h I | g hts Recommend Joule

to Your Librarian

Summary . . .
' « Firm low-carbon resources consistently lower decarbonized

Graphical Abstract electricity system costs

Keywords « Availability of firm low-carbon resources reduces costs 10%-—
62% in zero-CO 5 cases

References
« Without these resources, electricity costs rise rapidly as CO ;

Article Inf o
ricie nfo limits near zero




Solar PV Demand response
(price responsive
curtailment)

Solar thermal

Wind energy “Fuel “Fast
saving” burst” Flexible demand
Run-of-river variable balancing (rescheduling)
hydro renewables resources
Solar thermal Battery storage
with storage
) “Firm” low- Long—duration
Reservoir hydro
Y carbon resources storage
Geothermal Biogas

Nuclear Biomass
Gas or coal

“Flexible base” w/CCS “Firm cyclers”



Average cost of electricity ($/MWNh)
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Data source: Sepulveda, N., Jenkins, J.D., et al. (2018), “The role of firm low-carbon resources in deep
decarbonization of electric power systems,” Joule 2(11).
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Average cost of electricity ($/MWNh)
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Data source: Sepulveda, N., Jenkins, J.D., et al. (2018), “The role of firm low-carbon resources in deep
decarbonization of electric power systems,” Joule 2(11).
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WHAT DO ELECTRICITY PRICES LOOK LIKE IN A ZERO CARBON SYSTEM?

“The rapid deployment of renewable power such as wind and solar is
driving down both the cost and carbon intensity of electricity,
and is creating an opportunity to design new biorefining strategies that
take advantage of low-carbon power to improve the efficiency of
biomass conversion (e.g. accommodating external reducing
equivalents made available from the strategic use low-carbon power).”

-ARPA-E Carbon-optimized Bioconversion
Workshop announcement
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PRICE DURATION CURVES — ZERO CARBON SYSTEMS, CA + WECC
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Source: Unpublished modeling of zero carbon electricity systems in California and the Western Interconnection, Jesse Jenkins, Princeton University, May 28, 2019. 'I'l



PRICE DURATION CURVES — ZERO CARBON SYSTEMS, CA + WECC

Renewables + Batteries Only
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Source: Unpublished modeling of zero carbon electricity systems in California and the Western Interconnection, Jesse Jenkins, Princeton University, May 28, 2019. '|2



PRICE DURATION CURVES — ZERO CARBON SYSTEMS, CA + WECC

Renewables + Batteries + H2 Electrolysis w/Storage
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Source: Unpublished modeling of zero carbon electricity systems in California and the Western Interconnection, Jesse Jenkins, Princeton University, May 28, 2019. '|3



PRICE DURATION CURVES — ZERO CARBON SYSTEMS, CA + WECC

Renewables + Batteries + Nuclear
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PRICE DURATION CURVES — ZERO CARBON SYSTEMS, CA + WECC

Renewables + Batteries + Hydrogen CCGTs
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Source: Unpublished modeling of zero carbon electricity systems in California and the Western Interconnection, Jesse Jenkins, Princeton University, May 28, 2019. '|5



PRICE DURATION CURVES — ZERO CARBON SYSTEMS, CA + WECC

Renewables + Batteries + Allam Cycle Natural Gas w/CCS
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SUMMARY STATISTICS COMPARED
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CLOSING THOUGHTS / QUESTIONS

* Average electricity prices do NOT fall in a zero-carbon electricity system (they likely increase)

* The distribution of prices changes significantly, especially if firm resources have low/zero
marginal costs (nuclear, geothermal, hydro) or long-duration storage used to replace firm
generation.

* Maedian electricity prices fall in cases to <$2-10 per MWh

* If H2 or natural gas combustion remains firm resource, median prices remain moderate
(542-63 per MWh)

* Number of hours of zero price electricity increases (approx. 20-40% of hours across scenarios)

* Can you design bioconversion processes that operate flexibly to take advantage of low-
cost/free electricity inputs when available on a sporadic basis?

* |f so, how does a non-marginal increase in demand change price distribution?
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